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Abstract
The high-pressure structural phase transition in AuAl2 is studied using first-principles density
functional theory. Our theoretical results predict a structural phase transition at ∼18.7 GPa and
the high-pressure phase is identified to be a primitive orthorhombic structure. In addition, our
electronic structure calculations rationalize the observed variation of electrical resistance
with pressure.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Pressure-induced structural phase transitions in solids are
ubiquitous and the microscopic understanding of phase
transformations has led to substantial progress in condensed
matter physics. Theoretical and experimental studies of
structural phase transitions continue to be one of the very active
fields in high-pressure condensed matter physics [1, 2]. The
diamond anvil cell (DAC) coupled with intense synchrotron
x-ray beams has provided an enormous impetus to these
experimental investigations. Though the DAC synchrotron
data is quite reliable it is limited in k space which
may lead to ambiguous structural solutions [3–5]. The
structure determination requires hit and miss (with symmetry
considerations) or computational work, either based on first-
principles density functional methods or sometimes even
classical molecular dynamical simulations. But in recent years
density functional theory based calculations have provided
great insight into the properties of materials near phase
transitions as well as into the driving mechanism thereof [6].
Generally, the structural determinations are carried out by
calculating the total energy for different possible arrangements
of atoms over a wide range of pressures using the density
functional theory based methods [7, 8]. Thus one can
determine the possible structural phase transition by comparing
the pressure variation of enthalpies for different atomic
arrangements, i.e. different crystal structures.

In this paper we report results of our first-principles
density functional theory calculations for the AuAl2

intermetallic under pressure. Using this, we have predicted the
crystal structure of the high-pressure phase. The intermetallics
of gold (Au) and platinum (Pt) with aluminum (Al), gallium
(Ga) and indium (In) have received considerable attention in
the past, due to their fundamental and technological impor-
tance [9]. Many of these compounds have been demonstrated
to be superconducting at low temperatures [10]. At ambient
conditions, these intermetallics have good electrical conductiv-
ity and exist in the cubic fluorite structure (CaF2). In contrast to
this, most of the fluorite structure materials are halides, oxides
or chalcogenides of univalent or tetravalent cations and show
predominantly ionic bonding. These intermetallics also serve
as prototypes for studying the variations in the 5d bands at
larger A–A separations (A = Au/Pt) compared to those existing
in pure A (Au or Pt). Some of these intermetallics are known
to show electronic topological transitions (ETT) under pres-
sure [11, 12]. To study ETT in AuAl2, Garg et al [3] measured
electrical resistance up to 25 GPa pressure and they observed
the continuous resistance decrease up to 12 GPa pressure.
Above about 12.5 GPa pressure, resistance started increasing
slowly and beyond 16 GPa pressure a much faster increase was
observed. An explanation for the observed resistance varia-
tion with pressure in terms of detailed band structure calcula-
tions failed as calculations ruled out the occurrence of ETT.
Thus a probable structural phase transition at ∼16 GPa was
guessed [3]. Subsequent x-ray diffraction measurements by
them confirmed a structural phase transition near 17 GPa. But
they were unable to determine the crystal structure of the high-
pressure phase due to the presence of only a few diffraction
lines relevant to this phase.
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Figure 1. Crystal structures of AuAl2 used in our calculations.
(a) Calcium fluorite (Fm3̄m), (b) orthorhombic (Pnma), and
(c) hexagonal (P63/mmc).

In order to determine a possible crystal structure of
the high-pressure phase, we have carried out total energy
calculations for three structures, namely, cubic fluorite (SG:
Fm3̄m), orthorhombic (SG: Pnma) and hexagonal (SG:
P63/mmc) as a function of pressure. The reason for choosing
only these structures is based on the fact that CaF2 itself is

Table 1. Comparison of the calculated quantities with the
experimental.

Properties Theory Experimental [3]

a (Å) 6.066 6.005
B (GPa) 104 111
B ′ 4.83 4.00

known to undergo the Fm3̄m-to-Pnma-to-P63/mmc series of
transformations under pressure [13, 14]. In our study, we have
fully optimized the internal (fractional) atomic coordinates and
cell parameters of the orthorhombic and hexagonal structures
at several densities. We find that, at pressures close to the
experimental value, AuAl2 transforms to an orthorhombic
structure (Pnma), very similar to the CaF2. Our calculations
also help in rationalizing the observed pressure variation of
resistance in terms of the change in the density of states across
the cubic CaF2-to-orthorhombic Pnma structural transition.

2. Method of calculations

All the calculations were performed using the Vienna ab
initio simulation package (VASP) which is based on the
pseudopotential density functional technique. We have used
projector augmented wave (PAW) pseudopotentials which
were generated using the valence configuration s1d10 for Au
and s2p1 for Al [15–17]. For the exchange–correlations terms
the generalized-gradient approximation of Perdew–Burke–
Ernzerhof (GGA-PBE) was used [18]. To chose the plane
wave basis set an energy cutoff of 500 eV is taken in our
calculations. The Brillouin zone (BZ) samplings were carried
out using 275 k points in the irreducible wedge of the BZ for
the cubic structure, 200 k points for the orthorhombic structure
and 231 k points for the hexagonal structure. The Monkhorst–
Pack method was employed for the k-point generation in
the BZ [19]. The forces on atoms were converged to
10−4 eV Å

−1
. The energy convergence with respect to k

points in the BZ sampling and plane wave energy cutoff has
been carefully evaluated. All the atomic coordinates and
cell parameters of the high-pressure phases were optimized
at several densities. All three crystal structures are shown in
figure 1. These structures were generated using the Xcrysden
computer software [20].

3. Results and discussion

For the ambient structure (i.e. cubic CaF2), several observables
such as equilibrium volume (thus lattice constant), bulk
modulus (B) and its first pressure derivative (B ′) were
estimated from the calculated total energy as a function of
volume. All these quantities are given in table 1 along
with available experimental data. To obtain the equilibrium
volume, the energy–volume data was fitted to a fourth-order
polynomial and the equilibrium volume was identified from the
minimum of the curve. The computed equilibrium volume is
overestimated by ∼3% compared to the experimental value,
a very common feature of GGA exchange–correlations as it
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Figure 2. The variation in the total energy on relaxation, as a
function of compression for the orthorhombic structure of AuAl2.

Figure 3. Computed variations in the total energies with volume
compression for all three different structures of AuAl2.

underbinds the solids. This value is within the typical and
acceptable range of the density functional based first-principles
calculations. The computed bulk modulus, 104 GPa, is also
underestimated due to the under-binding given by GGA. The
calculated value of the pressure derivative of the bulk modulus
is 4.85, which matches reasonably with the experimental value
of 4.0 [3]. Using these values of bulk modulus and equilibrium
volumes, our estimated Debye temperature (289 K) is in good
agreement with the experimental value of 297 K [21, 22].

For the high-pressure phase of the AuAl2 intermetallic
the post fluorite structure, i.e. orthorhombic (Pnma), was the
first choice [13]. Starting from this structure, we determined
the equilibrium parameters by relaxing with respect to cell
parameters and the fractional atomic coordinates. The total
energy of relaxed and unrelaxed structures with volume
compression for the orthorhombic (Pnma) is shown in
figure 2. Here unrelaxed means the structural parameters
(i.e. b/a, c/a ratios and internal atomic coordinates) are as for
the CaF2 structure [14]. One can notice that at V/V0 = 1.0
the energy change on relaxation is by 127 meV per formula
unit (f.u.) and this change in energy increases with volume
compression. For V/V0 = 0.718 the energy change is about
614 meV/f.u. These observations point out the necessity of the

Figure 4. Pressure–volume equation of states for AuAl2. Here the
arrow indicates the transition pressure and the experimental data is
from [3]. The V0 exp is the cubic phase equilibrium volume from [3].

Figure 5. Enthalpy variation of AuAl2 with pressure in Fm3̄m and
Pnma (relaxed) structures.

structural relaxation for the computations which deal with the
studies related to the phase transitions.

Total energy for the relaxed orthorhombic and hexagonal
structures is compared with that of the ambient cubic fluorite
structure and results are depicted in figure 3. From this it is
evident that, beyond ∼13% compression, the orthorhombic
Pnma structure becomes lower in energy compared to the
other two structures, thus implying a structural phase transition
from cubic fluorite to orthorhombic Pnma structure at this
compression. Using our energy versus volume results, we
calculated the pressure–volume equation of state for Fm3̄m
and Pnma structures and these are shown in figure 4 along
with experimentally available data points. To determine
the structural transition pressure, we estimated the structural
enthalpies for the ambient (Fm3̄m) and the high-pressure
(Pnma) phases as a function of pressure. The results are
displayed in figure 5. Our calculated transition pressure
is 18.7 GPa, which is in very good agreement with the
experimental value of transition pressure (∼17 GPa) [3],
thus supporting the possibility that the new structure may be
Pnma. The optimized structural parameters just above the
transition pressure for the orthorhombic structure are given

3
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Table 2. Structural parameters of high-pressure phase. The parameters in square brackets are from [3]. Here we took the longest cell edge
(denoted by c) along the z axis and the smallest cell edge (denoted by b) along the y-axis. The difference in a between theory and experiment
is largely due to cell volume differences.

Theory Rietveld refined

Au (4c): (0.2532, 0.25, 0.1300) Au (4c): (0.2767, 0.25, 0.1317)
Al1 (4c): (0.3837, 0.25, 0.4163) Al1 (4c): (0.4039, 0.25, 0.4556)
Al2 (4c): (0.0558, 0.25, 0.3484) Al2 (4c): (00.2005, 0.25, 0.3473)
a = 6.9735 Å, b/a = 0.469, c/a = 1.139 a = 7.414 [7.472], b/a = 0.476 [0.425], c/a = 1.10 [1.08]

Figure 6. Rietveld refinement with Pnma space group.

in table 2. The theoretically optimized structure resulted in
a good match with the experimental diffraction pattern (see
figure 6). Starting from the first-principles relaxed values of
atomic coordinates (table 2), we could do the Rietveld analysis
and obtain the final fractional coordinates for the orthorhombic
phase. Obviously some of the values have drifted away from
the initial estimates (i.e. theoretical values), but it leads to
excellent agreement with the experimental diffraction pattern
(figure 6). Also, we compared our Rietveld refined lattice
parameters with that of [3] (see table 2).

To explain the observed high-pressure resistance behavior
qualitatively, we make use of the Bloch resistivity formula
derived for electrons with a parabolic dispersion scattering
from acoustic Debye phonons [23], i.e.

ρ = 3π h̄ Q6n2

8e2εF D(εF)2 NkBθDk4
F

(
T

θD

)5

I5

(
θD

T

)
. (1)

Here n is the electron density, εF is the Fermi energy, Q is a
phonon wavevector, D(εF) is the density of states (DOS) per

Figure 7. Electronic DOS for different structures (a) at ambient
pressure, (b) at 18.7 GPa pressure.

unit volume, i.e. specific density of states, θD is the Debye
temperature, kF is the Fermi vector and I5 is a Debye integral
given by

I5(x) =
∫ x

0

z5ez

(ez − 1)2
dz. (2)

Expressing εF and kF in terms of n and D(εF), the Bloch
formula can be written as

ρ = π2h̄ Q6n−1/2

4e2 D(εF)kBθD

(
T

θD

)5

I5

(
θD

T

)
. (3)

Equation (3) shows that, at a given temperature, the resistivity
of a metal correlates inversely with the specific electronic DOS
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Figure 8. Specific electronic DOS for cubic fluorite phase variation
with pressure.

(i.e. DOS/unit volume) at the Fermi level (EF). The calculated
specific DOS at 0 and 18.7 GPa pressure for cubic (Fm3̄m) and
orthorhombic (Pnma) structures with fully relaxed structures
is shown in figure 7. One can see that the cubic phase has the
lower specific DOS at the Fermi level than the orthorhombic
phase. As shown in figure 7(b), we find that, near 18.7 GPa
pressure, the specific DOS at EF for the orthorhombic Pnma
structure is smaller by almost 25% compared to that of the
cubic phase. This substantial decrease in specific density of
states at the Fermi level across the phase transition would imply
much larger resistivity in the daughter phase (if the other terms
in equation (3) do not change appreciably with the structural
transition), in agreement with experimental findings [3]. Thus
one would expect an abrupt jump in the resistance across the
cubic-to-orthorhombic phase transition. But, being a first-order
transition, the daughter phase will grow gradually and thus one
would expect that resistance in the mixed phase will increase
smoothly until the transition is completed. Our calculations
also show that in the cubic phase the specific DOS at EF

increases slowly with pressure, implying a gradual decrease of
resistance below 10 GPa pressure region (figure 8).

4. Conclusions

Our ab initio total energy calculations, coupled with the
structural relaxation calculations, predict the high-pressure
phase of AuAl2 to be orthorhombic (Pnma). This high-

pressure structure is the same as that observed in CaF2 at high
pressure [9]. Our calculated specific electronic DOS at the
Fermi level provides qualitative interpretation of the observed
pressure-induced change in the resistance.

Acknowledgments

We thank Dr Alka B Garg for providing us with the high-
pressure x-ray diffraction data and Mr K K Pandey for the
Rietveld refinement.

References

[1] Samara G A 1986 Physica 139/140 B3
[2] McMahon M I and Nelmes R J 2006 Chem. Soc. Rev. 35 943
[3] Garg A B, Verma A K, Vijayakumar V, Rao R S and

Godwal B K 2005 Phys. Rev. B 72 024112
[4] Gregoryanz E, Sanloup C, Somayazulu M, Badro J, Fiquet G,

Mao H-K and Hemley R 2004 Nat. Mater. 3 294
[5] Young A F, Sanloup C, Gregoryanz E, Scandolo S,

Hemley R J and Mao H-K 2006 Phys. Rev. Lett. 96 155501
[6] Young A F, Montoya J A, Sanloup C, Lazzeri M,

Gregoryanz E and Scandolo S 2006 Phys. Rev. B 73 153102
[7] Hohenberg P C and Kohn W 1964 Phys. Rev. B 136 864
[8] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[9] Hahn E and Seraphin B O 1978 Phys. Thin Film 10 1

[10] Wernick J H, Menth A, Geballe T H, Hull G and
Maita J P 1969 J. Phys. Chem. Solids 30 1949

[11] Godwal B K, Meenakshi S, Modak P, Rao R S, Sikka S K,
Vijayakumar V, Bussetto E and Lausi A 2002 Phys. Rev. B
65 R140101

[12] Garg A B, Godwal B K, Meenakshi S, Modak P, Rao R S,
Sikka S K, Vijayakumar V, Lausi A and Bussetto E 2002
J. Phys.: Condens. Matter 14 10605

[13] Seifert K F and Bunsenges Ber 1966 Phys. Chem. 70 1041
[14] Xiang W, Shan Q and Ziyu W 2006 Phys. Rev. B 73 134103
[15] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[16] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[17] Kresse G and Joubert J 1999 Phys. Rev. B 59 1758
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.

77 3865
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

Monkhorst H J and Pack J D 1977 Phys. Rev. B 16 1748
[20] Kokalj A 2003 Comput. Mater. Sci. 28 155
[21] Asfcroft N W and Mermin N D 1976 Solid State Physics

(Philadelphia, PA: Saunders College Publishing)
[22] Rayne J A 1963 Phys. Lett. 7 114
[23] Ziman J M 1967 Electrons and Phonons (Oxford: Oxford

University Press) p 364

5

http://dx.doi.org/10.1039/b517777b
http://dx.doi.org/10.1103/PhysRevB.72.024112
http://dx.doi.org/10.1038/nmat1115
http://dx.doi.org/10.1103/PhysRevLett.96.155501
http://dx.doi.org/10.1103/PhysRevB.73.153102
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1016/0022-3697(69)90171-1
http://dx.doi.org/10.1088/0953-8984/14/44/341
http://dx.doi.org/10.1103/PhysRevB.73.134103
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.16.1748
http://dx.doi.org/10.1016/S0927-0256(03)00104-6
http://dx.doi.org/10.1016/0031-9163(63)90629-2

	1. Introduction
	2. Method of calculations
	3. Results and discussion
	4. Conclusions
	Acknowledgments
	References

